Three-dimensional architecture of inner medullary vasa recta
نویسندگان
چکیده
منابع مشابه
Isolation and perfusion of rat inner medullary vasa recta.
Outer medullary isolated descending vasa recta have proven to be experimentally tractable, and consequently much has been learned about outer medullary vasa recta endothelial transport, pericyte contractile mechanisms, and tubulovascular interactions. In contrast, inner medullary vasa recta have never been isolated from any species, and therefore isolated vasa recta function has never been subj...
متن کاملInner medullary lactate production and accumulation: a vasa recta model.
Since anaerobic glycolysis yields two lactates for each glucose consumed and since it is reported to be a major source of ATP for inner medullary (IM) cell maintenance, it is a likely source of "external" IM osmoles. It has long been known that such an osmole source could theoretically contribute to the "single-effect" of the urine concentrating mechanism, but there was previously no suggestion...
متن کاملInterstitial water and solute recovery by inner medullary vasa recta.
A recent model of volume and solute microvascular exchange in the renal medulla was extended by simulating the deposition of NaCl, urea, and water into the medullary interstitium from the loops of Henle and collecting ducts with generation rates that undergo spatial variation within the inner medullary interstitium. To build an exponential osmolality gradient in the inner medulla, as suggested ...
متن کاملArchitecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
Pathways and densities of descending vasa recta (DVR) and ascending vasa recta (AVR) in the outer zone of the inner medulla (IM) were evaluated to better understand medullary countercurrent exchange. Nearly all urea transporter B (UT-B)-positive DVR, those vessels exhibiting a continuous endothelium, descend with little or no branching exclusively through the intercluster region. All DVR have a...
متن کاملA multiunit model of solute and water removal by inner medullary vasa recta.
A recent model of volume and solute microcirculatory exchange in the renal medulla based on a single descending vasa rectum (DVR) was extended to account for the varying number of vessels along the corticomedullary axis. The assumption that concentration polarization at the walls of ascending vasa recta (AVR) during volume uptake eliminates transmural oncotic pressure gradients was examined. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Physiology-Renal Physiology
سال: 2006
ISSN: 1931-857X,1522-1466
DOI: 10.1152/ajprenal.00481.2005